Process Description

The activated-sludge process, first developed in England in 1914, has been used widely in municipal and industrial wastewater treatment. Although many process variations have been developed for specific applications, biodegradation of organic matter in the activated-sludge process can be illustrated using a typical flow diagram as shown in Figure 7.21.2.

Clarified wastewater discharged from the primary clarifier is delivered into the aeration basin where it is mixed with an active mass of microorganisms (referred to as activated sludge) capable of aerobically degrading organic matter into carbon dioxide, water, new cells, and other end products (see Figure 7.25.1). Diffused or mechanical

FIG. 7.25.1 Aerobic biological oxidation of organic wastes.

aeration maintains the aerobic environment in the basin and keeps reactor contents (referred to as mixed liquor) completely mixed.

After a specific treatment time, the mixed liquor passes into the secondary clarifier, where the sludge settles under quiescent conditions and a clarified effluent is produced for discharge. The process recycles a portion of settled sludge back to the aeration basin to maintain the required activated-sludge concentration (expressed in terms of mixed-liquor, volatile SS [MLVSS] concentration). The process also intentionally wastes a portion of the settled sludge to maintain the required SRT for effective organic (BOD) removal.

DIY Battery Repair

DIY Battery Repair

You can now recondition your old batteries at home and bring them back to 100 percent of their working condition. This guide will enable you to revive All NiCd batteries regardless of brand and battery volt. It will give you the required information on how to re-energize and revive your NiCd batteries through the RVD process, charging method and charging guidelines.

Get My Free Ebook

Post a comment