Intermittent Sand Filters

Although the intermittent sand filter was popular in small plants early in this century, it is being phased out. Figure 7.21.12 shows a flow diagram of an intermittent sand filter that furnishes additional treatment to an Imhoff tank effluent. Because both sand filters and Imhoff tanks were popular during the same period, their combined use was also common. Requirements for better quality plant effluents and the availability of other processes that do not require as much operator attention or produce the objec-tional odors associated with sand filters have influenced their being phased out.

Even small plants must use several sand filter units to permit time for drying, cleaning, and replacing the media. They frequently use a dosing tank with an automatic siphon to dose the filter in use, usually two to four times a day. A loading rate of about 100,000 to 150,000 gal per acre per day is practical for Imhoff tank effluent. Where more effective treatment precedes the sand filters, the application rate can be increased. Selecting the sand filter to be dosed is usually a manual operation controlled by valves.

A sand filter usually consists of 3 to 4 in of sand laid over 6 to 12 in of gravel. Tile underdrains collect the effluent, which is discharged to the receiving waters. A uniform flow distribution to sand filters is important and is usually achieved by trough distribution or a rotary-arm distribution device.

Solar Stirling Engine Basics Explained

Solar Stirling Engine Basics Explained

The solar Stirling engine is progressively becoming a viable alternative to solar panels for its higher efficiency. Stirling engines might be the best way to harvest the power provided by the sun. This is an easy-to-understand explanation of how Stirling engines work, the different types, and why they are more efficient than steam engines.

Get My Free Ebook

Post a comment