Installation Methods

Installation design has two main principles. First, for pH control, the sensor location and assembly must minimize transportation delays and sensor time constant. The additional dead time from a delayed and slow measurement increases the loop's period, control error, and sensitivity to nonlinearity. Second, the installation must minimize the number of times the electrodes must be removed for maintenance (e.g., calibration and cleaning). Removal and manual handling increase error and reduce electrode life. The fragile gel layer is altered by handling, and the equilibrium achieved by the reference junction is upset.

Submersion Assemblies

Sample systems are undesirable because they add transportation delay and increase cost, and problems arise with winterization and plugging. Therefore, a submersion assembly is best for control. However, velocities below 1 fps dramatically slow the electrode measurement response due to the increased boundary layer near the glass surface and promote the formation of deposits that can further slow the measurement. The bulk velocity in even the most highly agitated vessels rarely exceeds 1 fps and is often much lower. This low velocity results in coating problems and a slow response.

The removal of a submersion assembly is also time-consuming. The addition of various cleaners such as those shown in Figure 7.7.7 can reduce the number of times a submersion assembly must be removed. Side entry into a vessel with a retractable probe is the standard installation for fermentors, as shown in Figure 7.7.8.

Retractable and Brush-Cleaned Units

The best location for most probes or assemblies, except in the most abrasive services, is in a recirculation line close to the vessel outlet. Installing the probe downstream of the pump is preferred because the strainer blocks and the pump breaks up clumps of material that could damage the electrodes. The retractable electrode is the most straightforward and economical solution. However, accidents caused by removing the restraining strap or omitting tubing ferrules have caused these assemblies to be banned from many plants.

Many wastewater treatment facilities use flow-through assemblies or direct-probe insertions with block, drain, and bypass valves. The flow is returned to the suction of the pump or vessel. If the flow chamber has a cross-sectional area much larger than the process connections, the velocity drops too low, response time slows, and coating problems increase.

Figure 7.7.8 illustrates a piston-actuated, retractable pH assembly used in automated online cleaning applications or for storage, regeneration, and calibration. This design is useful in applications where probe exposure must be short to protect it from glass surface deterioration or reference fill contamination. Such contamination is caused by hot caustic or nonaqueous solutions.

The electrode tip must be pointed down so that the air bubble inside the electrode fill does not reside in the tip and dry the inside surface. The air bubble provides some

FIG. 7.7.8 Retractable side entry probes often used on fermentors. (Courtesy of Ingold)

compressibility to accommodate thermal expansion. An installation angle of 15 degrees or more from the horizontal is sufficient to keep the bubble out of the tip. Some electrode designs eliminate the bubble and provide a flexible diaphragm for fill contraction and expansion.

Section 7.41 discusses pH control systems.

Project Earth Conservation

Project Earth Conservation

Get All The Support And Guidance You Need To Be A Success At Helping Save The Earth. This Book Is One Of The Most Valuable Resources In The World When It Comes To How To Recycle to Create a Better Future for Our Children.

Get My Free Ebook


Post a comment