Design Considerations

Aerobic digestion is usually applied to extended-aeration or contact-stabilization, activated-sludge plants. However, the process is also suitable for many industrial and municipal biological sludges, including trickling-filter humus and excess activated sludge. Information pertaining to design criteria is not abundant. However, the principal design considerations are as follows:

1. Estimated daily quantity of sludge entering the digester

2. Specific oxygen requirements supplied by diffused or mechanical surface aerators

3. Digester detention time

Recommended loadings for aerobically treated mixtures of primary and activated sludge or primary and tricklingfilter sludge are less than 100 lb per 1000 ft3 with a minimum recommended detention time of 20 days. The suggested minimum detention time for excess activated sludge is 10 days and preferably 15 days. If the temperature in the digestion basin is less than 60°F, additional capacity should be provided.

Recommended oxygen (air) requirements are 15 to 20 cfm per 1000 ft3 of tank capacity; however, if only primary sludge is treated or waste-activated sludge is withdrawn directly from the final clarifier, the air supply should be 25 to 30 cfm per 1000 ft3 of tank capacity.

Aerobic digesters are similar to conventional activated-sludge tanks in that they are not covered or insulated. Thus, they are generally more economic to construct than covered, insulated, and heated anaerobic digesters. Similar to conventional aeration tanks, if diffused aeration is used, the aerobic digesters can be designed for spiral-roll or cross-roll aeration. Environmental engineers frequently use surface mechanical aeration in the design of aerobic digesters. The mixing qualities and oxygen transfer capability of surface aerators are superior to diffused-aeration systems per unit horsepower input.

the required VSS destruction level. This average oxygen requirement may be slightly greater or lower than the actual demand at equilibrium, but this average number is adequate for design purposes.

Experimental batch units should be operated at the lower anticipated temperature in the field under winter conditions. A design procedure using laboratory data uses a mass balance of degradable SS through an aerobic digester as follows:

Degradables in - Degradables out = Degradables destroyed Q(X1 - Xn) - Q(X2 - Xn) = (dx/dt)V 7.44(4)

Project Earth Conservation

Project Earth Conservation

Get All The Support And Guidance You Need To Be A Success At Helping Save The Earth. This Book Is One Of The Most Valuable Resources In The World When It Comes To How To Recycle to Create a Better Future for Our Children.

Get My Free Ebook


Post a comment