11 Structural Steel Shapes And Plates

Steels for structural uses may be classified by chemical composition, tensile properties, and method of manufacture as carbon steels, high-strength low-alloy steels (HSLA), heat-treated carbon steels, and heat-treated constructional alloy steels. A typical stress-strain curve for a steel in each classification is shown in Fig. 1.1 to illustrate the increasing strength levels provided by the four classifications of steel. The availability of this wide range of specified minimum strengths, as well as other material properties, enables the designer to select an economical material that will perform the required function for each application.

Some of the most widely used steels in each classification are listed in Table 1.1 with their specified strengths in shapes and plates. These steels are weldable, but the welding materials and procedures for each steel must be in accordance with approved methods. Welding information for each of the steels is available from most steel producers and in publications of the American Welding Society.

1.1.1 Carbon Steels

A steel may be classified as a carbon steel if (1) the maximum content specified for alloying elements does not exceed the following: manganese—1.65%, silicon—0.60%, copper—

Renewable Energy 101

Renewable Energy 101

Renewable energy is energy that is generated from sunlight, rain, tides, geothermal heat and wind. These sources are naturally and constantly replenished, which is why they are deemed as renewable. The usage of renewable energy sources is very important when considering the sustainability of the existing energy usage of the world. While there is currently an abundance of non-renewable energy sources, such as nuclear fuels, these energy sources are depleting. In addition to being a non-renewable supply, the non-renewable energy sources release emissions into the air, which has an adverse effect on the environment.

Get My Free Ebook


Post a comment