## L

b of buildings and 2 in. toward the interior of buildings less than 20 stories. Considering the maximum permitted average lean of 1.5 in. in the same direction of a story, the geometric imperfection of Lc/ 500 can be used for buildings up to six stories with each story approximately 10 ft high. For taller buildings, this imperfection value of Lc/500 is conservative since the accumulated geometric imperfection calculated by 1/500 times building height is greater than the maximum permitted erection tolerance.

In this study, we shall use Lc/500 for the out-of-plumbness without any modification because the system strength is often governed by a weak story that has an out-of-plumbness equal to Lc/500 [28] and a constant imperfection has the benefit of simplicity in practical design. The explicit geometric imperfection modeling for an unbraced frame is illustrated in Figure 5.11.

5.2.3.2 Equivalent Notional Load Method

### 5.2.3.2.1 Braced Frames

The ECCS [21,22] and the CSA [23,24] introduced the equivalent load concept, which accounted for the geometric imperfections in an unbraced frame, but not in braced frames. The notional load approach for braced frames is also necessary to use the proposed methods for braced frames.

For braced frames, an equivalent notional load may be applied at mid-height of a column since the ends of the column are braced. An equivalent notional load factor equal to 0.004 is proposed here, and it is equivalent to the out-of-straightness of Lc/1000. When the free body of the column shown in Figure 5.12 is considered, the notional load factor, a, results in 0.002 with respect to one-half of the member length. Here, as in explicit imperfection modeling, the equivalent notional load factor is the same in concept for both sway and braced frames.

One drawback of this method for braced frames is that it requires tedious input of notional loads at the center of each column. Another is the axial force in the columns must be known in advance to determine the notional loads before analysis, but these are often difficult to calculate for large structures subject to lateral wind loads. To avoid this difficulty, it is recommended that either the explicit imperfection modeling method or the further reduced tangent modulus method be used.

### 5.2.3.2.2 Unbraced Frames

The geometric imperfections of a frame may be replaced by the equivalent notional lateral loads expressed as a fraction of the gravity loads acting on the story. Herein, the equivalent notional load factor of 0.002 is used. The notional load should be applied laterally at the top of each story. For sway frames subject to combined gravity and lateral loads, the notional loads should be added to the lateral loads. Figure 5.13 shows an illustration of the equivalent notional load for a portal frame.

## Post a comment