Hejsshau J 1977 A Stirling cycle engine parts I and II Model Engr 142 1976 pp 12591265 and 143 1977 pp 2527

Herman's, M. L.. Uhi-emann, H. and Spigt, C. L. (1972). 'Hie combination of a radioisotopic heat source and a Stirling cycle conversion system. Proc. 2nd Int. Conf. on Power from Radioisotopes, pp. 445-466. Madrid. May/June.

— and Asselman, G. A. A. (1978). The Stirling cycle in climate control systems. /Voc. 13th /.E.C.E.C., San Diego, Ca.. Aug. 20-25.

Herscmel, J. (1850). Making ice. 77ie Athenaeum, p. 22. Jan. 5.

II ig a. W H. (1965). Practical Philips cycle for low temperature refrigeration. Crvogenic Tech., p. 203.

(1967). Simplifcd heat engine J.P.L. Calif. Report No. 30-3297/NPÜ-13613.

-(1075). Stirling cycle engine and refrigeration systems. U.S. Patent 3 971 230.

Hinton, m. Cj. jr. Lura. T„ Roessi.hk. W. u. and Sampson, H. T. (1971). Exhaust emission characteristics of hybrid heat engine/electric vehicles. S.A.E. Paper 710825, Oct. 26-29.

Hise, E. C. and Wilson, J. V. (1977). A heat pump cycle with an air-water working fluid. Proc, 12th l.E.C.E.C. Report No. 779066. Washington. D.C.. Aug. 28-Sept. 2.

HoaCiIan'd. L. C. and Percival, W. 1!. (1978). Potential of the Stirling engine for stationary power applications in the 500-2000 hp ran^c. Proc. 13th I.E.C.E.C., San Diego, Co., Aug. 20-25.

Hoi-hni, F. (1978). Stirling laboratory research engine: Report on the design and fabrication J PL Report No. 5030-178. Jet Propulsion Lab., Pasadena, Ca.

-and McDougal, A. R. (1978). Design of a preprototype Stirling Laboratory Research Engine Proc. 13th J.E.C.E.C.. San Diego. Ca.. Aug. 20 25.

Hoess, .1. A. and Stahman, R. C. (1969). Unconventional thermal mechanical and nuclcar low-pollution—potential power sources for urban vehicles. Proc. 4th I.EX .EX ., pp. 959-980, Washington, D.C., Sept. 2L26.

- Ciceaney, E. S.. Creswick. F. A.. Trayskk. D. A.. Fischer. R.. Timber-

i aki%, A. R.. Basham, S. J., HerRiixje, J. T. and Wn.cos, J. P. (1969). Study of unconventional thermal, mechanical and nuclcar low-pollution-potential power sources for urban vehicles. Handle Columbus L.abs.. Ohio, Oct.

Hoh'Man, L. C. (1976). Engine Performance. Site Review Sub-Committee for Pneumatic Left Ventriclc Assist Thermal Power System, Program Review. May. Sacramento, Ca.

I loo an. W. H. (1963). Method and apparatus for employing fluids in a closed cycle. U.S. Patent 3 115 014. Dcc. 24.

- (1964). Closed-Cycle Cryogenic Refrigerator and Apparatus Embodying

- and Stuart, R. W. (1963). Design considerations for crvogcnic refrigerators. ASME Paper No. 63-WA-292.

Holman. R. R. and Jaspers, 1-1. A. (1974). A Stirling cycle 400 W(e) economical radioisotope generator. Proc. Am. Nuc. Soc. Ann Mtg., Phila.

Holmgren, J S. (1970). Implanted energy conversion system. MDAC Annual Report. No. PH43-67-1408-3, June 29. 1969-July 7. 1970.

Horn, S. B. (1973). Pncumaiic Stirling cycle, cooler with nan-contaminating compressor. U.S. Patent 3 765 197, Oct.

Morton, J. H. (1966). Military engines for ground power. Aatomot. Ind., pp. 65-67, May 1.

Hougen, J. O. and PiRirr. E. L. (1951). Eflective thermal conductivity of granular solids through which gases arc flowing. Che/n. Eng. Prog., 47. pp. 295-303.

Howard, C. P. (1963). Heat-transfer and flow-friction characteristics of skewed-passage and glass-ceramic heat-transfer surfaces. ASME Paper No. 63-WA-115.

— (1964), The single-blow problem including the, effects of longitudinal con duction. ASME Paper No. 63-GTP-11.

Huffman, I'. N., Harvey, R. J. and Kitrii akis, S. S. (1968). Design of an implantable Rankinc-cyclc radioisotope power source. Proc. 3rd l.E.C'.E.C.. p. 750. Boulder, Col., Aug. 14-16.

Hurley, F.. G. (1954). Tests on a twin-piston Stirling-cycle engine using internal combustion. Shell Htornton Report K. 121.

Hurn. R. W. (1978). Fuel tolerance in the Stirling engine. Proc. ¡3th ¡.E.C.E.C.. San Diego. Ca.. Aug. 20-25.

Hutchinson, F. W. (1955). Thertnodynamics of heat power systems. Addison

Wesley Publ. Co. Inc.. Reading. Mass., Chapter 16, pp. 373-376. Iliifk, C. E. (1948). Thermal Analysis of the Contra-Flow Regenerative Heat-

Exchanger. Proc. I. iV/ec/t. £'.. 159, pp. 363-372. Jakeman, R. W. (1966). The construction ami testing of the Stirling universal research engine. B.Sc. Thesis. Durham Univ. Janickj, E. (1976). Which Auto Engine Next? Auto. Engr. 1, (7). Jaspers. H. A. (1975). Power-Control System for Stirling Engines. U.S. Patent 3 886 744.

- and dc Pre, F. K. (1973). Stirling engine design studies of an underwater power system and a total energy system. Proc. 8th I.E.C.E.C.. pp. 588-593. Philadelphia, Pa.. Aug. 13-17. Johansson, L. (1978). Small Stirling machines for stationary applications. Inst, of

Gas Tech. Seminar. Stirling Cycle Prime Movers. Chicago, 111., June. Johnson, J. E. (1952). Regenerator heat-exchangers for gas turbines. Aero

Research Council Technical Report. R and M No. 2630. Johnson, O. (1946). Civilization, to John Ericsson, debtor. I'he Scientific

Monthly, pp. 101-106, Jan. Johnston. R. P. (1972-3). Implanted Energy Conversion System. MDAC Annual Reports 1971-2. 1972-3. Reports. Nos. PI 143-67-1408-5. and PH43-67-1408-6.

Baker, L. P.. Bennktt, A.. Blair, C. R. and Emigh, S. G. (1968). Implanted energy conversion system. MDA Annual Report no. MDC-G4448, 1975-6.

--Bonnerr. A.. Emigh, S. G., Griffith, W. R.. Noble, J. E.. Pkrronh, R.

E. and White. M. A. (1977). Stirling/hydraulic artificial heart power source. Proc. 12th I.E.C.E.C., pp 104-111. Washington. D.C., Aug. 28-Sept. 2.

A Stirling hydraulic power source for artificial hearts. Proc. 1 Ith I.E.C.E.C., p. 143. Lake Tahoc, Sept. 12-17.

-Emigh, S. G.. Griffith, W. R.. Noble, J. E. and Perrone, R. E. (1975).

Implanted energy conversion system. MDA Annual Report no. MDC-G4444. 1974-5.

- Griffith, W. R.. Perronk, R. E., Martini. W. R. and Emigh. S. G.

(1974). Implanted energy conversion system. MDAC Annual Report no. 1-HV-4-2901-1. 1973-4.

-Noble, J. F... Emigh, S. G., White, M- A.. Griffith, W. R. and Pf.rrone,

R. E. (1975). A Stirling engine with hydraulic power output for powering artificial hearts, /'roc. ¡0th I.E.C.E.C. pp. 1448-55. Newark. N.J.. Aug. 17-22.

-and Whi te, M. A. (1971). Simulation of an artificial heart system, MDAC

Paper no. WD 1589. Jones. L. L. Jr. and Fax, D. II. (1954). Perturbation solutions for the periodic-

flow thermal regenerator. ASME Paper no. 54-A-130. Jonkers, C. O. (1958). Hot-Gas Reciprocating Engine. U.S. Patent no. 2 857 220.

- and ICoHi-er, J. W. L. (I960). Gaseous medium leakage prevention arrangement for a hot-gas reciprocating machine. U.S. Patent No. 2 943 453. Joule, J (1852). On the Air Engine. Phil. Trans. R. Soc. 142, pp. 65-77. Karavansky, i.i. and Meltser, L. Z. ( 1958). Thermodynamic investigations of the working cycle of the Philips machine. Proc. 10th Int. Cong. Refrig., pp. 3-29. 209.

Kays. W. M. and London, A. L. (1958). Compact Heat-Exchangers. McGraw Hill. New York; 2nd edn, McGraw HOI, 1964.

Kprni, T. (1978). Pumping Ring Analysis. DOF Hwy. Vch. SysL Com. Coord Mtg.. Troy. Mich., May.

Kelly, D. A. (1976). Rotary Closed Parallel Cycle Engine Systems. U.S. Paieni 3 958 421.

-- (1976). Rotary Stirling Cycle Engine Systems. U.S. Patent 3 958 422.

Kettler, J. R. (1975). The thermal vehicle—A pollution-free concept. Proc. 10th I.E.C.E.C., pp. 548-553, Newark. N.J.. Aug. 17-22.

Khan, M. I. (1962). The application of computer techniques to the general analysis of the Stirling cycle. M.Sc. Thesis, Univ. of Durham.

Kim, J. C. (1970). An analytical and experimental study of heat transfer and How-friction characteristics for periodically reversing flow through the porous matrix of thermal regenerators. Ph.D. Thesis, Purdue Univ.

-(1973). An analytical and experimental study of flow friction characteristics of periodically reversing flow. ASME Paper no. 73-WA/FE-L3, pp. 1-S.

and Qvauj, F.. B. (1971). Analytical and Experimental Studies of Compact Wirc-Screen Heat Exchanger. Adv. C'ryog. Eng.. 16. pp. 302-311

--and Helmer, W. A. (1971). Apparatus for studies of regenerators and heat exchangers for pulse tube. vttOlcmicr and Stirling-type refrigerators. 8th Int. Cong, of Refrig., Paper no. 1:46, Aug.

Kikk, A. (1874). On the mechanical production of cold. Proc. of the hist. Civil Eng. 37, pp. 244-315.

Kirkjley. D. W. (1959). (Continued work on the hot-air engine. B.Sc. Hons. Thesis, Durham Univ.

— (1962). Art investigation of the losses occurring in reciprocating hot-air engines. Ph.D. Thesis. Durham Univ.

-(1962). Determination of the optimum configuration for ,i Stirling engine. J

-- (1965). A thermodynamic analysis of the Stirling cycle and a comparison with experiment. S.A.E. Paper No. 949B. Int. Auto. Eng Congress. Detroit. Michigan, Jan.

Kitzner, F. W. (1977a). Stirling engine feasibility study of an 80-100 hp engine and of improvement potential for emissions and fuel economy. NASA/DOE Report No. COO/2631-22. WIS. Springfield, Va.

-(1977b). The Ford/Philips Stirling engine programme. Proc. ERDA Adv.

Auto Power Syst. Cont. Coord. Mtg.. Dearborn. Mich., Oct.. NTIS, Springfield. Va.

Knoos, S. 11972) Method and device for hot gas engine or gov refrigeration machine. U.S. Patent 3 698 182.

Koenio, K. 11966). An oiuesiigafion into a means of approaching isothermal professes applicable in Stirling cycle machines. Master's Thesis. M.LT.

Komi.hu, J W. L. (1956). Refrigerator gas liquification device. U.S. Patent 2 734 354.

- (1957). Ilot-gas reciprocating engine for refrigerating. U.S. Patent 2 784 570.

-<1959). Single-acting hot-gas reciprocating engine. U.S. Patent 2 872 779.

-(I960). The gas refrigerating machine and its position in cryogenic technique. Prog. Cryog., 2, pp. 41-67.

— (1965). The Stirling refrigeration cycle. Scientific American 212, No. 4. pp. 119-127.

- (1968). Computation of the temperature field of regenerators with temperature-dependent parameters. Proc. Int. Cryogcnic Conf.. Brighton.

and Bloom, A.T. (1957). Cold gas refrigerator. U.S. Patent 2 781 647. and Jonkers, C. (). (1954a). Gas refrigerating machine. Philips Tech. Rev.. 16, pp. 69 78.

--(1954b). Construction of a gas refrigerating machine. Philips Tech.

--(1955). Fundamentals ol the gas refrigerating machine. Philips Tech.

- and Sciialkwuk, W. F. (1956). Cold gas refrigerator. U.S. Patent 2 750 765.

Koulmayer, Ci. F. 11967). Extension of the maximum slope method for arbitrary upstream fluid temperature changes. ASME Paper No. 67-HT-79, Aug. Koizumi, I. (1976). Development of Stirling engines Jnl Jap. Sac. Mcch. Eng.,

Vol. 79, No. 693. Aug. Koi.in, 1. (1968). 'Hie Stirling cycle with nuclear fuel. Nuclear Eng., 13, pp. 1027-1034.

Koopmans, A. (1952). Hot-Gas Reciprocating Engine. U.S. Patent 2 618 923. Korth, M. W\, Asmuy. II. A. and Staiiman, R. C. (1972). Emission measurement techniques for non-conventional powerplants. Proc. ~th I.E.C.E.C.. Ann Arbor, Mich.

Kovton, I. M., Naumov, A. M. and Nesterenko, V. B. (1967). The Stirling cycle in dissociating gas. Int. Chem. Eng.. 7. pp. 608-610. Krasicki, B. R. and Pierce, B. L. (1977). Heat transport research and development for the nuclear-powered artificial heart. Proc. 12th l.FC.E.C., pp. 119-125. Washington, D.C.. Aug. 28-Scpt. 2. Krasin, A. K. (1971). Physical and technical principles of creating atomic power stations with fast neutron gas reactors cooled by dissociating N204. Proc. 4th U.N. Jnt. Conf. on Peaceful Uses of Atomic Energy. Geneva. Sept.

- and Nesterenko, V. B. (1967). Thermodynamic and transfer properties of chemically reacting gas systems. Nauka it Technica, Minsk. Kraiter, A. 1. (1978). Ilydrodynamic lubrication of Stirling engine rod seals,

DOE Hwy. Veh. Syst. Cont. Coord. Mtg., Troy. Mich. Kuiilman. P. (1973). MT7. Matortcch Z.. 34. pp. 135-9.

- (1974). Stirling engine loi vehicle propulsion. VDI-Brrichtc.

- and Horst, 2. (1970). The Stirling engine—A new prime mover. MAN

- and Zaiu-, H. (1970). Kraftsmaschinc Stirlingmotor. VDJ-Nachrichten, Nr. 12.25.3.70.5.18.

Laimc. N. (1975). Vienna! power plant. U.S. Patent 3 894 395. Lambeck, A. J .1. (1955) Hot-Gas Reciprocating Engine and Refrigerator or Heat Pump Operating on the Reversed Hot-Gas Reciprocating Engine Principle. U.S. Patent 2 709 334.

Lambertson, T. J. (1958). Performance factors of a periodic-flow heat exchanger. Trans. Am. Soc. mech. Engrs. 80, pp. 586-592. I .ance, J. R. and Selz, A. (1968). An Implantable Artificial Heart power source.

Proc. 3rd I.E.C.E.C.. pp. 758-765, Boulder, Col.. Aug. 14-16. Lanciiester, F. W. (IS98). Improvements in Fluid Pressure Engines. British Patent 10836.

I .apbdbs, D. E., Hinton. M. G. and Mki.tzer. .1. (19741. Current status of alternative automotive power systems and fuels. Aerospace Corp., El Segundo. Cal.

and Mn.iv.iR, J. (ll>74). Status review oi hybrid heat engine/battery and heat engine. Aerospace Corp.. El Segundo. Cal.

Lavignm, P. (1973). Driving device of the Stirling-cycle relaxation type for an implantable artificial heart. U.S. Patent 3 766 568.

Leach, C. E. and Fryer, li. C. (1968). Radioisotope energized undersea Stirling engine. I*roc. 3rd I.E.C.E.C., pp. 830-844. Boulder. Col., Aug. 14-16.

Lee, 11. (1969). Development of satisfactory long term percutaneous leads. Proc. First Artificial Heart Conf., pp. 793-808. Washington, D.C., June.

Lki-:, K. (1076). 7Vic Stirling cycle with adiabatic compression and expansion. M.Sc. Thesis, University of Calgary.

Lee. R. (1937). Heat engine. U.S. Patent 2 067 453.

Lkhukk, W. (1975). Simple and cheap heat pump for heating. German I'ateni No. 2 360 585.

Leeth. G. G. (1969). Energy conversion devices for ground transportation, ¡'roc. 4th I.E.C.E.C.. pp. 933-939, Washington. D.C.. Sept. 21-26.

Lefeuvrk. A. H. (1974). Pollution control in continuous combustion engines. Proc. 15th Int. Sym. on Combust., pp. 1169-1180. Aug. 25-31.

1.!-:huh:i.d. I_>. (1977a). System analysis design and proof of concept experiment on a total-energy system. DOE Report no. COO-2947-3 (available from NTIS).

- (1977b). Practicability study of Stirling total energy systems. Proc. 12th

I.E.C.E.C.. Washington, D.C., pp. 1504-1511. Aug. 26-Scpt. 2.

- <mcf Goldowsky, M. (1977). Artificial heart thermal converter component research and development. Proc. 12th /.E.C.E.C.. Paper No. 779019, Washington. D.C., Aug. 28-SepL 2.

Lia. T. A. (1971). Stirlingmotoren-Miljovennlig, Energibesparende-et Alternative Til Dagcns Diesel—Og Oltomotorer. Masken. Norway. Vol. 42, pp. 23-27.

-(1973). The Stirling engine. Combustion Engine Progress', pp. 44-47.

- and Lagekovist, R. S. G. (1973). Stirling Engine with Unconventional

Heating Svstcm. Proc. 8th I.EC.E.C. pp. 165-173. Philadelphia, Pa.. Aug. 13-17.

Liang. C. Y. and Yang, W. J. (1975). Modified Single-Blow Technique for Performance Evaluation on Heat Transfer Surfaces. J. Heat Transfer (ASME), 97. pp. 16-21.

Liexesch, J. II. and Wade, W. R. (1968) Stirling engine progress report— Smoke, odor, noise and exhaust emission. S.A.E. Paper No. 680081. pp. 292-307. Jan. 8-12.

--(1969). Stirling engine operating quietly with almost no smoke and odor. S.A.E. Jnl, 77, pp. 40-44. Jan.

Lindsley, E. F. (1975). Air-conditioning cold from any source of heat. Popular Science.

Livingston. R. P., Fryicberg, D. G. and Raujs. C. J. (1978). A generalized computer based kinematic dynamic simulation of single degree of freedom Stirling cycle planar mechanims. Proc. 13th I.E.C.E.C., San Diego, Ca.. Aug. 20-25.

Locke, G. L. (195?)). Heat transfer and How-friction characteristics of porous solids. Dept. of Mech. Eng., Stanford Univ., Technical Report No. 10.

Lorrus, Ci. H. (1964). Performance of model 4-S1210 Stirling cycle engine— Assignment 71-101. U.S. Navy MEL Evaluation Report No. 158/64. Oct.

Longmore. D. (19711. Ihe hear;. World Univ. Library. Weidenfield, and Nicol-son, London.

Longsworth, R. C. (1966). Ar: analytical and experimental investigation of pulse tube refrigeration. Ph.D. Thesis, Syracuse Univ.. June.

Lowe, J. P. (1976). Liquid piston oscillates naturally. Design Sews. 32. Feb 23. I.uuviosEN, K. (1972a). The Stirling: Ford's engine for the eighties? Motor, Sept. 9.

-(1972b). The engine of the 1980s—IStirling's 4Mr Clean' images lies behind

Ford-Philips deal. Ward's Auto. World, pp. 41-45. Sept. -(1973). Stirling engine—History and currcnt development of another possible alternative to the internal combustion engine. Road ¿c ¡'rack, 24. No. 7, p. 83. Mar.

Lt.'eck, R., Dams/, G. and Daniels, A. (1967). Adaptation of rolling-type seal diaphragms to miniature Stirling-cycle refrigerators. Report No. AITDL-TR 67-96. WPAFB, Ohio. Lyajmn, V. I.. Prussian, Y. O. and Bakhnev, V. G. 11975). Elfect of efficiency of the end heat exchanger on the start-up period of a helium cooler. Khim. and Ncft. Mashinostr. U.S.S.R.. 11 (9), Sept; also Chem. Pet. Eng.. 11 (9-10), Sept. McCartney, J. F. and Gates, M. A. (1975). Power sources for remote ocean-

oriented applications, f'w. 10th I.E.C.E.C., Newark. N.J.. pp. 1318-132?. McLean, A. P. (19751. Brittle materials design for high temperature gas turbine. AMMRC CTR 75-8, bv Ford Motor Co. on Contract no. DAAG-46-71-C-0162.

McM/vhon, H. O. and Gifford. W. E. (1959). Fluid expansion refrigeration method and apparatus. U.S. Patent 2 906 101.

— (I960). A new low-temperature gas expansion cycle. Adv. Crvog. Eng.. 5, pp. 345-72.

Maoee, F. N. and Doering, R. D. (1968). Vuilleumier-cycle cryogenic refrigerator development. Report no. AFFDL-TR-6S-67. Maki, E. R. and DeHart, A. O. (1971). A new look at swash-plate drive mechanism. S.A.E. Paper no. 710829. Maeakhr. S. F. and Daunt, J. G. (1963). Miniature cryogenic engine. U.S. Patent 2 074 244.

Mauk. M. J. (L968). Sdrling-cycle drive for tin eiectrokinetic transducer. U.S. Patent 2 074 244.

Maleett, T. (1973). The Robinson hot air engine. Model Engr.. 139. p. 160. Malone, J. F. J. (1930). A new prime mover. Jnl roy. Soc. Arts, 79. pp. 679-709.

-(1931). A new prime mover. Engineer, Land., pp. 97-101.

Marciniak. I. .1.. Bratis. J. C. and Davis, A. (1978). Total energy technology alternative studies. Argonne National Lab. Report. DOF„ available NTIS. Martini. W R. (1968a). A Stirling engine module to power circulatory-assist devices. ASME Paper no. 68-WA/Ener-2. -(1968b). Stirling-cycle energy converter to power circulatory support systems. MDAC Annual Report no. DAC-60763.

- (1969). Implanted encrgv conversion system. MDAC Annual Report. No.

Solar Stirling Engine Basics Explained

Solar Stirling Engine Basics Explained

The solar Stirling engine is progressively becoming a viable alternative to solar panels for its higher efficiency. Stirling engines might be the best way to harvest the power provided by the sun. This is an easy-to-understand explanation of how Stirling engines work, the different types, and why they are more efficient than steam engines.

Get My Free Ebook


Post a comment