M Stirred Reactors

Stirred reactors, in which one or more impellers are used to generate flow and mixing within the reactor, are among the most widely used reactors in chemical and allied industries. Stirred reactors offer unmatched flexibility and control over transport processes occurring within the reactor. A skilled reactor engineer can tailor the fluid dynamics and, therefore, performance of a stirred reactor by appropriate adjustments to reactor hardware and operating parameters. Parameters such as reactor shape, aspect ratio, number, type, location and size of impellers and degree of baffling provide effective handles to control the performance of stirred reactors. However, the availability of such a large number of parameters also makes the job of selecting the most suitable configuration for the stirred reactor quite difficult. It is essential to first translate the 'wish list' of reactor performance into a 'wish list' of desired fluid dynamics of stirred reactors. Once the desired flow characteristics are identified, it is then necessary to use or to develop appropriate tools to relate reactor hardware and operating procedures to resulting flow within the reactor. In this chapter, applications of computational flow modeling tools to simulate flow within stirred reactors are discussed in detail. Emphasis is on providing adequate information to the readers to enable them to initiate simulations of industrial stirred reactors. Before that, we discuss some reactor engineering issues related to stirred reactors.

0 0

Post a comment