Design Optimization

To design successful plasdc products meeting factors such as quality requirements, consistency, designated life, and profitability, what is needed is understanding and applying the behavior of plastics such as service temperature, load, and time in optimizing the design. Similar action is required for other materials (steel, glass, wood, etc.).

When compared to other materials such as steel and certain other metals their data are rather constant, at least in the temperature range in which plastics are used. When the design engineer is accustomed to working with metals, the same computations are used in order to obtain a plastic product with sufficient strength and deformation under a given load that must not exceed a definite limit for proper performance. One will probably include safety factors of 1.5 to 2 or even more if not too familiar when designing with plastics. That means the designer initially does not utilize the full strength of the material and/or significandy increases product cost.

0 0

Post a comment