6642Natural Gas Processing

Natural gas is usually converted to H2 and CO in a steam reforming reactor. Steam reforming reactors yield the highest percentage of hydrogen. In addition to natural gas, steam reformers can be used on light hydrocarbons such as butane and propane. In fact, with a special catalyst, steam reformers can also reform naphtha. Steam reforming reactions are highly endothermic and need a significant heat source. Often, the residual fuel exiting the fuel cell is burned to supply this requirement. Fuels are typically reformed at temperatures of 760 to 980°C. Partial oxidation reformers can also be used for converting gaseous fuels, but do not produce as much hydrogen as steam reformers.

Natural gas has sulfur containing odorants (mercaptans, disulfides, or commercial odorants) for leak detection. Since neither fuel cells nor reformer catalysts are sulfur tolerant, the sulfur must be removed. This is usually accomplished with a fixed or packed bed of zinc oxide or the possible use of a hydrodesulfurizer if required.

Solar Stirling Engine Basics Explained

Solar Stirling Engine Basics Explained

The solar Stirling engine is progressively becoming a viable alternative to solar panels for its higher efficiency. Stirling engines might be the best way to harvest the power provided by the sun. This is an easy-to-understand explanation of how Stirling engines work, the different types, and why they are more efficient than steam engines.

Get My Free Ebook

Post a comment