References cited in this section

1. F.A. Smidt, Int. Mater. Rev., Vol 135, 1990, p 61-128

2. J.K. Hirvonen, Mater. Sci. Rep., Vol 6, 1991, p 215-274

3. G.K. Hubler, Crit. Rev. in Surf Chem, Vol 2 (No. 3), 1993, p 169-198 8. W. Ensinger and G. Wolf, Mater. Sci. Eng. A, Vol 116, 1989, p 1

16. P.J. Martin, R.P. Netterfield, and W.G. Sainty, J. Appl. Phys., Vol 55, 1984, p 235

49. K. Ogata, Y. Andoh, S. Sakai, and F. Fujimoto, Nucl. Instrum. Methods Phys. Res. B, Vol 59/60, 1991, p 229

' R.A. Kant, B.D. Sartwell, I.L. Singer, and R.G. Vardiman, Nucl. Instrum. Methods Phys. Res. B, Vol —,

1985, p 915

94. P.J. Martin, W.G. Sainty, and R.P. Netterfield, Vacuum, Vol 35, 1985, p 621

97. J. Ullmann, G.K. Wolf, and W. Moller, Nucl. Instrum. Methods Phys. Rev. B, Vol 80/81, 1993, p 1507

101. R.A. Roy, D.S. Yee, and J.J. Cuomo, Proc. Mater. Res. Soc. Symp., Vol 128, 1989, p 23

102. R. Roy, Surf Coat. Technol., Vol 51, 1992, p 203

103. P.H. Wocjiechowski, J. Vac. Sci Technol. A, Vol 6, 1988, p 1924

104. I.H. Loh, J.K. Hirvonen, J.R. Martin, P. Revesz, and C. Boyd, Proc. Mater. Res. Soc. Symp., Vol 108, 1988, p 241

105. F. Parmigiani, E. Kay, T.C. Huang, and J.D. Swalen, Appl. Opt., Vol 24, 1985, p 3335

106. F. Parmigiani, E. Kay, T.C. Huang, J. Perrin, W. Jurich, and J.D. Swalen, Phys. Rev. B, Vol 33, 1986, p 879

107. S.S. Nandra, F.G. Wilson, and CD. Des Forges, Thin Solid Films, Vol 107, 1983, p 335

109. J.E.E. Baglin, in Ion Beam Modification of Insulators, P. Mazzoldi and G. Arnold, Ed., Elsevier, 1986, p 585

110. E.H. Hirsch and I.K. Varga, Thin Solid Films, Vol 69, 1980, p 99

111. R.A. Zuhr, S.J. Pennycook, T.S. Noggle, N. Herbot, T.E. Hayes, and B.R. Appleton, Nucl. Instrum. Methods. Phys. Res. B, Vol 37/38, 1989, p 16

112. K.-H. Müller, Phys. Rev. B, Vol 35, 1987, p 7906

113. D.W. Brown, E.P Donovan, C M. Cotell, and K S. Grabowski, Proc. Mater. Res. Soc. Symp., Vol 268, 1992, p 173

114. I. Yamada, H. Usui, S. Tanaka, and S. Wada, Nucl. Instrum. Methods Phys. Res. B, Vol 59/50, 1991, p 302 Advantages and Limitations

The IBAD process is a hybrid of PVD and ion implantation. It combines the advantages of both techniques, while eliminating most of the disadvantages of each. Table 4 lists the advantages and limitations of IBAD.

Table 4 Advantages and limitations of ion-beam-assisted deposition

Advantages, achievable benefits

Low deposition temperature

High adhesion

Bulk density achievable

Control of microstructure (nanocrystalline; metastable crystalline or amorphous; textured; and epitaxial, for some materials)

Reproducible

Precise modulation of composition with depth

Highly versatile for metals, ceramics, semiconductors, dielectrics

Limitations

Moderately higher cost than physical vapor deposition

Line-of-sight processing

Technology in commercial infancy (limited vendors)

Even polymers with low melting points can be coated, because the deposition temperature can be maintained between room temperature and nearly 100 °C (210 °F). The properties of adhesion, stress, and density are superior to those of PVD films, and there is a high degree of control over the microstructure. Depending on the deposition parameters, films can be deposited as:

• Nanocrystalline

• Textured crystalline or epitaxial (for some materials)

• Metastable crystalline

Finally, the composition, or crystalline phases, can be precisely modulated as a function of thickness to produce functionally gradient materials with properties such as graded hardness, coefficient of thermal expansion, refractive index, density, tensile strength, and stress.

0 0

Post a comment