References

1. K. L. Reifsnider and K. N. Lauraitis (Eds.), Fatigue of Filamentary Composite Materials, ASTM STP 636, American Society for Testing and Materials, Philadelphia, 1977.

2. K. N. Lauraitis (Ed.), Fatigue of Fibrous Composite Materials, ASTM STP 723, American Society for Testing and Materials, Philadelphia, 1981.

3. R. Talreja, Fatigue of Composite Materials, Technomic, Lancaster, 1987.

4. P. A. Lagace (Ed.), Composite Material: Fatigue and Fracture, 2nd ed. 5 ASTM STP 1012, American Society for Testing and Materials, Philadelphia, 1989.

5. K. L. Reifsnider (Ed.), Fatigue of Composite Materials, Vol. 4, Composite Materials Series, Elsevier, New York, 1991.

6. T. K. O'Brien, "Towards a Damage Tolerance Philosophy for Composite Materials and Structures," in S. P. Garbo (Ed.), Composite Materials: Testing and Design, 9th ed., ASTM STP 1059, American Society for Testing and Materials, Philadelphia, 1990.

7. S. G. Pantelakis, T. P. Philippidis, and T. B. Kermanidis, "Damage Accumulation in Thermoplastic Laminates Subjected To Reversed Cyclic Loading," in S. A. Paipetis and A. G. Yioutsos (Eds.), High Technology Composites in Modern Applications, University of Patras, Patras, Greece, 1995, pp. 156-164.

8. C. W. Kensche (Ed.), European Commission, DG XII, 1996.

9. R. M. Mayer, Design of Composite Structures Against Fatigue: Applications to Wind Turbine Blades, Mechanical Engineering Publications, Suffolk, 1996.

10. B. J. de Smet and P. W. Bach, Database Fact: Fatigue of Composites for Wind Turbines, ECN-C-94-045, 1994.

11. J. F. Mandell and D. D. Samborsky, DOE/MSU Composite Material Fatigue Database: Test Methods, Material and Analysis, Technical Report SAND97-3002, Sandia Laboratories, 1997.

12. D. R. V. van Delft, H. D. Rink, P. A. Joosse, and P. W. Bach, "Fatigue Behaviour of Fibreglass Wind Turbine Blade Material at the Very High Cycle Range," European Wind Energy Conference Proceedings, Vol. 1, Thessaloniki, Greece, 1994, pp. 379-384.

13. A. T. Echtermeyer, "Fatigue of Glass Reinforced Composites Described by One Standard Fatigue Lifetime Curve," European Wind Energy Conference Proceedings, Vol. 1, Thessaloniki, Greece, 1994, pp. 391-396.

14. P. A. Joosse, D. R. V. van Delft, and P. W. Bach, "Fatigue Design Curves Compared to Test Data of Fibreglass Blade Material," European Wind Energy Conference Proceedings, Vol. 3, Thessaloniki, Greece, 1994, pp. 720-726.

15. C. W. Kensche, "Lifetime of Gl-Ep Rotor Blade Material under Impact and Moisture," 3rd Symposium on Wind Turbine Fatigue Proceedings, Petten, Holland: IEA, April 21-22, 1994, p. 137-143.

16. D. R. V. van Delft, G. D. deWinkel, andP. A. Joosse, "Fatigue Behaviour of Fiberglass Wind Turbine Blade Material under Variable loading," 4th Symposium on Wind Turbine Fatigue Proceedings, Stuttgart, Germany: IEA, February 1-2, 1996, pp. 75-80.

17. C. W. Kensche, "Which Slope for Gl-EP Fatigue Curve?" 4th Symposium on Wind Turbine Fatigue Proceedings, Stuttgart, Germany: IEA, February 1-2,1996, pp. 81-85.

18. M. J. Owen and J. R. Griffiths, J. Mat. Sci., 13, 1521-1537 (1978).

19. T. Fujii and F. Lin, J. Comp. Mat., 29(5), 573-590 (1995).

20. T. P. Philippidis and A. P. Vassilopoulos, J. Comp. Mat., 33(17), 1578-1599 (1999).

21. T. P. Philippidis and A. P. Vassilopoulos, Int. J. Fat., 21, 253-262 (1999).

22. T. P. Philippidis and A. P. Vassilopoulos, "Fatigue Design Allowables of GRP Laminates Based on Stiffness Degradation Measurements," Comp. Sci. Tech., 60, 2819-2828 (2000).

23. Z. Hashin and A. Rotem, J. Comp. Mat., 7, 448-464 (1973).

25. Z. Fawaz and F. Ellyin, J. Comp. Mat., 28(15), 1432-1451 (1979).

26. M.-H. R. Jen and C.-H. Lee, Int. J. Fat., 20(9), 605-615 (1998).

27. M.-H. R. Jen and C.-H. Lee, Int. J. Fat., 20(9), 617-629 (1998).

28. S. I. Andersen, P. Brondsted, and H. Lilholt, "Fatigue of Polymeric Composites for Wingblades and the Establishment of Stiffness-controlled Fatigue Diagrams," Proceedings of 1996 European Union Wind Energy Conference. Goteborg, Sweden, May 20-24, 1996, pp. 950-953.

29. IEC-TC88-WG8 test guideline, "Full-scale Structural Testing of Rotor Blades for WTGS's," IEC 61400-23, 1998.

30. S. W. Tsai and E. M. Wu, J. Comp. Mat., 5, 58-80 (1971).

31. P. S. Theocaris and T. P. Philippidis, Comp. Sci. Tech., 40, 181-191 (1991).

32. S. W. Tsai and H. T. Hahn, Introduction to Composite Materials, Technomic, Lancaster, 1980.

33. H. T. Hahn and R. Y. Kim J. Comp. Mat., 10, 156-180 (1976).

34. A. L. Highsmith and K. L. Reifsnider, "Stiffness Reduction Mechanisms in Composite Laminates," in K. L. Reifsnider (Ed.), Damage in Composite Materials, ASTM STP 775, American Society for Testing and Materials, Philadelphia, 1982, pp. 103-117.

35. K. L. Reifsnider, K. Schulte, and J. C. Duke "Long-Term Fatigue Behaviour of Composite Materials," in T. K. O'Brien (Ed.), Long-Term Behaviour of Composites, ASTM STP 813, American Society for Testing andMaterials, Philadelphia, 1983, pp. 136-159.

36. W. Hwang and K. S. Han J. Comp. Mat., 20 154-165 (1986).

37. B. Liu and L. B. Lessard, Comp. Sci. Tech., 51 43-51 (1994).

38. H. A. Whitworth Composite Structures, 40(2), 95-101 (1998).

39. J. M. Whitney, I. M. Daniel, and R. B. Pipes, Experimental Mechanics of Fiber Reinforced Composite Materials, Prentice-Hall, 1984.

40. J. M. Whitney, "Fatigue Characterisation of Composite Materials," in K. N. Lauraitis (Ed.), Fatigue of Fibrous Composite Materials, ASTM STP 723, American Society for Testing and Materials, Philadelphia, 1981, pp. 133-151.

41. Din 65 586, Fatigue Strength Behaviour of Fiber Composites under One Stage Loading, Vorlage, April 1992.

42. W. H. Press, S. A. Teukolsky, W. T. Vetterling, andB. P. Flannery, Numerical Recipes in Fortran. The Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge, MA, 1994.

43. F. J. Massey, J. Am. Stat. Assoc., 46, 68-78 (1951).

44. E. M. Wu and J. K. Scheublein, "Laminate Strength—A Direct Characterization Procedure," in Composite Materials: Testing and Design, ASTM STP 546, American Society for Testing and Materials, Philadelphia, 1974, pp. 188-206.

Renewable Energy Eco Friendly

Renewable Energy Eco Friendly

Renewable energy is energy that is generated from sunlight, rain, tides, geothermal heat and wind. These sources are naturally and constantly replenished, which is why they are deemed as renewable.

Get My Free Ebook


Post a comment