References

1. P. C. Paris and F. Erdogan, J. Basic Eng., 85, 528-534 (1963).

3. J. Aveston and A. Kelly, J. Mat. Sci., 8, 352-362 (1973).

4. E. R. de los Rios, C. A. Rodopoulos, and J. R. Yates, "Micro-mechanical Crack Growth Modelling of Fibre-Reinforced Composites," in H. S. Found (Ed.), Experimental Techniques and Design in Composite Materials, Sheffield University Press, Sheffield, UK, 1995, pp. 304-320.

5. E. R. de los Rios, C. A. Rodopoulos, and J. R. Yates, "The Effect of Fibre, Matrix Mechanical Properties on the Fatigue Crack Propagation in a Fibre-reinforced

Titanium Matrix Composite," in S. A. Paipetis and A. G. Youtsos (Eds.), High Technology Composites in Modem Applications, University of Patras, Applied Mechanics Laboratory, Patras, Greece, 1995, pp. 316-327.

6. G. R. Irwin, "Plastic Zone Near a Crack and Fracture Toughness," in Proceedings of the Seventh Sagamore Ordnance Materials Conference, Vol. IV, Syracuse University, New York, 1960, pp. 63-78.

7. K. Schulte and K. Minoshima, Composites, 24(3), 197-208 (1993).

8. R. O. Ritchie, Mat. Sci. Eng., A103, 15-28 (1988).

9. E. R. de los Rios, C. A. Rodopoulos, and J. R. Yates, "Fatigue Damage Design Principles of Fibre-reinforced Titanium Matrix Composites," in R. Cook and P. Poole (Eds.), ICAF'97, EMAS, Edinburgh, 1997, pp. 1051-1060.

10. C. A. Rodopoulos, "Fatigue Damage Map for Metal Matrix Composites—A Useful Tool for Design Against Fatigue," in S. A. Paipetis and E. E. Gdoutos (Eds.), 1st Hellenic Conference on Composite Materials, Xanthi, 1997, pp. 545-569.

11. E. R. de los Rios, C. A. Rodopoulos, and J. R. Yates, Int. J. Fatigue, 19(5), 379-387 (1997).

12. M. D. Senmeier and P. K. Wrigth, "The Effect of Fiber Bridging on Fatigue Crack Growth in Titanium Matrix Composites," in M. N. Gungor and P. K. Liaw (Eds.), Proceedings TMS Fall Meeting, Indiana, Fundamental Relationships Between Microstructure and Mechanical Properties of Metal Matrix Composites.

13. M. Y. He and A. G. Evans, Acta Metall. Mat., 39(7), 1587-1593 (1991).

14. W. D. Brewer and J. Unman, Interface Control and Mechanical Property Improvements in Silicon Carbide Titanium Composites, NASA Technical Paper 2066, 1982.

15. J. Cook and J. E. Gordon, Proc. Roy. Soc. London, A282, 508-520 (1964).

16. S. S. Wang and I. Choi, J. Appl. Mech., 50, 169-178 (1983).

17. J. R. Rice and G. C. Sih, Trans. ASME, June, 418-423 (1965).

18. M. Comninou, J. Appl. Mech., December, 631-636 (1977).

19. H. F. Wang, W. W. Gerberich, and C. J. Skowronek, Acta Metall. Mat., 41(8), 2425-2432 (1993).

20. P. Ehrburger and J. B. Donnet, Phil. Trans. Roy. Soc. London, A294, 495-505 (1980).

21. P. W. Erickson and E. P. Plueddemann, Historical Background of the Interface in Composite Materials, Vol. 6, E. P. Plueddemann (Ed.), Academic Press, New York, 1974, pp. 1-29.

22. M. Y. He and J. W. Hutchinson, J. Appl. Mech., 56, 270-278 (1991).

23. B. N. Cox and D. B. Marshall, Fatigue and Fracture of Eng. Mat. Struct., 14(8), 847-861 (1991).

24. J. P. Lucas, Eng. Fracture Mech., 42(3), 543-561 (1992).

25. M. F. Kanninen and C. H. Popelar, Advanced Fracture Mechanics, Oxford University Press, New York, 1985.

26. S. M. Jeng, J.-M. Yang, and C. J. Yang, Mat. Sci. Eng., A138, 181-190 (1991).

27. S. Jansson, H. E. Deve, and A. G. Evans, Metall. Trans., 22A, 2975-2984 (1991).

28. Y. S. Lee, M. N. Gungor, and P. K. Liaw, J. Composite Mat., 25, 536-556 (1991).

29. K. M. Fox, M. Strangwood, and P. Bowen, Composites, 25(7), 684-691 (1994).

30. J.-P. Favre, A. Vassel, and C. Laclau, Composites, 25(7), 482-487 (1994).

31. T. J. Mackin, P. D. Warren, and A. G. Evans, Acta Metall. Mat., 4, 1251-1257

32. M. Kuntz, K.-H. Schlapschi, B. Meier, and G. Grathwohl, Composites, 25(7), 476-481 (1994).

33. R. J. KeransandT. A. Parthasarathay, J.Am. CeramicSoc.,74(7), 1585-1596(1991).

34. H. L. Cox, Br. J. Appl. Phys., 3, 72-79 (1952).

35. A. Kelly and W. R. Tyson, J. Mech. Phys. Solids, 14, 177-186 (1966).

36. G. S. Holister and C. Thomas, Fibre Reinforced Materials, Elsevier, London, 1966.

37. D. Hull, An Introduction to Composite Materials, Cambridge Solid State Science Series, Cambridge University Press, Cambridge, UK, 1981.

38. R. F. Gibson, Principles of Composite Materials Mechanics, McGraw-Hill, New York, 1994.

39. M. D. Thouless and A. G. Evans, Acta Metall. Mat., 36, 517-522 (1988).

40. D. B. Marshall and B. N. Cox, Mech. Mat., 7, 127-133 (1988).

41. Y.-C. Chiang, A. S. D. Wang, andT.-W. Chou, J. Mech. Phys. Solids, 41, 1137-1154

42. C.-H. Shueh, Acta Metall. Mat., 38(3), 403-409 (1990).

43. P. D. Warren, T. J. Mackin, and A. G. Evans, Acta Metall. Mat., 40, 1243-1249 (1992).

44. S. M. Jeng, P. Alassoeur, and J. M. Yang, Mat. Sci. Engn., A138, 155-167 (1991).

45. P. K. Wright, R. Nimmer, G. Smith, M. Sensmeier, and M. Brun, "The Influence of the Interface on Mechanical Behavior of Ti-6Al-4V/SCS-6 Composites," in R. Y. Lin, R. J. Arsenault, G. P. Martins and S. G. Fishman (Eds.), Interfaces in Metal-Matrix Composites, The Minerals, Metals and Materials Society, 1989, pp. 595-581.

46. C. J. Yang, S. M. Jeng, and J.-M. Yang, Scripta Metall. Mat., 24, 469-474 (1990).

47. B. A. Bilby, A. H. Cottrell, and K. H. Swinden, Proc. Roy. Soc. London, A272, 304-314 (1963).

48. D. Hull, An Introduction to Composite Materials, 1st ed., Cambridge University Press, Cambridge, UK, 1981.

49. S. J. Connell, F. W. Zok, Z. Z. Du, andZ. Suo, Acta Metall. Mat., 42(10), 3451-3461

50. W. S. Johnson, Composites, 24(3), 187-196 (1993).

51. A. R. Ibbotson, C. J. Beevers, and P. Bowen, Scripta Metall. Mat., 25, 1781-1786 (1991).

52. S. M. Jeng, P. Alassoeur, and J. M. Yang, Mat. Sci. Engn., A154, 11-19 (1992).

53. D. P. Walls, G. Bao, and F. Zok, Acta Metall. Mat., 41, 2061-2071 (1993).

54. P. Bowen, "Characterisation of Crack Growth from an Unbridged Defect in Continuous Fibre Reinforced Titanium Metal Matrix Composites," in N. D. R. Goddard and P. Bowen (Eds.), Test Techniques in Metal Matrix Composites II, ERA Technology, London, 1992, pp. 107-126.

55. R. A. Naik, W. D. Pullock, and W. S. Johnson, J. Mat. Sci., 26, 2913-2920 (1991).

56. D. Walls, G. Bao, and F. Zok, Scripta Metall. Mat., 25, 911-916 (1991).

57. W. S. Johnson, R. A. Naik, and W. D. Pollock, "Fatigue Damage Growth Mechanisms in Continuous Fiber Reinforced Titanium Matrix Composites," in H. Kitagawa and T. Tanaka (Eds.), Fatigue 90, Engineering Materials Advisory Service, Tokyo, 1990, pp. 841-850.

58. L. J. Ghosn, J. Telesman, and P. Kantzos, "Fatigue Crack Growth in Unidirectional Metal Matrix Composite," in H. Kitagawa and T. Tanaka (Eds.), Fatigue 90, Engineering Materials Advisory Service, Tokyo, 1990, pp. 893-898.

59. D. M. Harmon and C. R. Saff, "Damage Initiation and Growth of Fiber Reinforced Metal Matrix Composites," in W. S. Johnson (Ed.), Metal Matrix Composites: Testing, Analysis and Failure Modes, ASTM STP 1032, 1989, pp. 237-245.

60. D. M. Harmon, C. R. Saff, and D. L. Greaves, "Strength Predictions for Metal Matrix Composites," in W. S. Johnson (Ed.), Metal Matrix Composites: Testing, Analysis and Failure Modes, ASTM STP 1032, 1989, pp. 222-236.

61. W. S. Johnson, Characterization of Fatigue Damage Mechanisms in Continuous Fiber Reinforced Metal Matrix Composites, Ph.D. Thesis, Duke University, 1979.

62. W. S. Johnson, Fatigue Testing and Damage Development in Continuous Fiber Reinforced Metal Matrix Composites, NASA Technical Memorandum, 100628, 1988.

63. G. D. Menke and I. J. Toth, The Time-Dependent Mechanical Behavior of Metal Matrix Composites, AFML-TR-102, U. S. Air Force Materials Laboratory, 1971.

64. W. S. Johnson, S. J. Lubowinski, and A. L. Highsmith, "Mechanical Characterization of Unnotched SCS6/Ti-15-3 Metal Matrix Composites at Room Temperature," in J. M. Kennedy, H. H. Moeller and W. S. Johnson (Eds.), Thermal and Mechanical Behaviour of Ceramic and Metal Matrix Composites at Room Temperatures, ASTM STP 1080, 1990, pp. 175-191.

65. G. S. Brady and H. R. Clauser, Materials Handbook, 13th ed., McGraw-Hill, New York, 1991.

67. W. S. Johnson, "Fatigue of Metal Matrix Composites," in K. L. Reifsnider (Ed.), Fatigue of Composite Materials, Elsevier Science, New York, 1990, pp. 199-229.

68. I. Greaves, The Growth of Naturally Initiating Fatigue Cracks in Titanium-Silicon Carbide MMCs, Ph.D. Thesis, University of Sheffield, 1994.

69. C. A. Rodopoulos, Fatigue Studies under Constant and Variable Amplitude Loading in MMCs, Ph.D. Thesis, University of Sheffield, 1996.

70. W. S. Johnson, Fatigue Damage Accumulation in Various Metal Matrix Composites, NASA Technical Memorandum, 89116, 1987.

71. C. R. Saff, Durability of Continuous Fiber Reinforced Metal Matrix Composites, AFWAL-TR, Air Force Wright Aeronautical Laboratories, 1987.

72. S. M. Jeng, P. Alassoeur, and J.-M. Yang, Mat. Sci. Engn., A148, 67-77 (1991).

73. R. T. Bhatt and H. H. Grimes, "Fatigue Behaviour of Silicon-Carbide Reinforced Titanium Composites," in Fatigue of Fibrous Composite Materials, ASTM STP 723, 1979, pp. 274-290.

74. S. S. Yau and G. Mayer, Mat. Sci. Engn., 82, 45-57 (1986).

75. B. Lerch and G. Halford, Mat. Sci. Engn., A200, 47-54 (1995).

76. B. P. Sanders, S. Mall, and S. C. Jackson, Int. J. Fatigue, 21, 121-134 (1999).

77. D. L. Krabbel, B. P. Sanders, and S. Mall, Composites Sci. Tech., 57,99-117(1997).

78. G. C. Sih, "Microstructure and Damage Dependence of Advanced Composite Material Behavior," in G. C. Sih, G. F. Smith, I. H. Marshall, and J. J. Wu (Eds.),

Workshop on Composite Materials Response: Constitutive Relations and Damage Mechanisms, Elsevier Applied Science, England, 1987, pp. 1-23.

79. L. J. Ghosn, P. Kantzos, and J. Telesman, Int. J. Fracture, 54, 345-357 (1992).

80. B. N. Cox, Acta Metall. Mat., 39(6), 1189-1201 (1991).

81. D. B. Marshall, B. N. Cox, and A. G. Evans, Acta Metall. Mat., 33(11), 2013-2021 (1985).

82. J. Llorca and M. Elices, Int. J. Fracture, 54, 251-267 (1992).

83. J. K. Wells and P. W. R. Beaumont, J. Mat. Sci., 17, 397-405 (1982).

84. B. Cotterell and J. R. Rice, Int. J. Fracture, 16, 155-169 (1980).

85. A. Navarro and E. R. de los Rios, Proc. Roy. Soc. London, A437, 375-390 (1992).

86. J. Aveston, G. A. Cooper, and A. Kelly, "Single and Multiple Fracture," in Proceed. of a Conference on the Properties of Fibre Composite, National Physical Laboratory, IPC Science and Technology Press, London, 1971, pp. 15-26.

87. B. Budiansky, J. W. Hutchinson, and A. G. Evans, J. Mech. Phys. Solids, 34(2), 167-189 (1986).

88. J. Bacuckas, Jr., and W. S. Johnson, Application of Fiber Bridging Models to Fatigue Crack Growth in Unidirectional Titanium Matrix Composites, NASA Technical Memorandum, 107588, 1992.

89. L. N. McCartney, Proc. Roy. Soc. London, A409, 329-350 (1987).

90. R. M. McMeeking and A. G. Evans, Mech. Mat., 9, 217-227 (1990).

91. I. N. Sneddon and M. Lowengrub, Crack Problems in the Classical Theory of Elasticity, Wiley, New York, 1969.

92. P. Kantzos, Fatigue Crack Growth in Ti-based Metal Matrix Composites, M.S. Thesis, Pennsylvania State University, 1991.

93. A. Navarro and E. R. de los Rios, Phil. Mag., A57, 43-50 (1988).

94. J. M. Yang, S. M. Jeng, and C. J. Yang, Mat. Sci. Eng., A138, 155-167 (1991).

95. D. Walls, G. Bao, and F. Zok, Acta Metall. Mat., 25, 911-916 (1991).

96. E. R. de los Rios, C. A. Rodopoulos, and J. R. Yates, Fatigue and Fracture of Eng. Mat. Struct., 19(5), 539-550 (1996).

97. T. W. Clyne and P. J. Withers, An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, UK, 1993.

98. D. L. Davidson, Metall. Trans., 23A, 865-879 (1992).

99. K. S. Chan, Acta Metall. Mat., 41(3), 761-768 (1993).

100. D. M. Kotchick, R. C. Hink, and R. E. Tressler, J. Composite Mat., 9, 327-336 (1975).

101. J. J. Masson and E. Bourgain, Int. J. Fracture, 55, 303-319 (1992).

102. SAE Fatigue Design and Evaluation Committee, Fatigue Design Handbook, Engineering Society for Advancing Mobility Land Sea Air and Space, 1988.

103. C. C. Osgood, Fatigue Design, Wiley Interscience, New York, 1970.

104. A. Bartlett and A. G. Evans, Acta Metall. Mat., 39(7), 1579-1585 (1991).

105. T. C. Lu, J. Yang, Z. Suo, A. G. Evans, R. Hecht, and R. Mehrabian, Acta Metall. Mat., 39(8), 1883-1890 (1991).

106. G. Lame, Leçons sur la Theorie de L'Elasticité, Gauthier-Villars, Paris, 1852.

107. R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., Willey, New York, 1989.

108. B. A. Lerch, D. R. Hull, and T. A. Leonhardt, As-Received Microstructure of a SiC/Ti-15-3 Composite, NASA Technical Memorandum 100938, 1988.

109. A. C. Pickard, The Application of 3-Dimensional Finite Element Methods to Fracture Mechanics and Fatigue Life Prediction, Engineering Materials Advisory Services, 1988.

110. J. C. Newman, Jr., and I. S. Raju, Stress-Intensity Factor Equations for Cracks in Three-Dimensional Finite Bodies, NASA Technical Memorandum 83200, 1981.

111. F. A. McClintock, "On the Plasticity of the Growth of Fatigue Cracks," in D. C. Drucker, and J. J. Gilman (Eds.), Fracture of Solids, Vol. 20, Wiley, New York, 1963, pp. 65-102.

112. S. Suresh, Fatigue of Materials, Cambridge Solid State Science Series, Cambridge University Press, London, 1991.

113. E. R. de los Rios, C. A. Rodopoulos, and J. R. Yates, Fatigue and Fracture of Eng. Mat. Struct., 21, 1503-1511 (1998).

114. L. Ghosn, P. Kantzos, and J. Telesman, Modeling of Crack Bridging in a Unidirectional Metal Matrix Composite, NASA Technical Memorandum 1044355, 1990.

115. H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis of Crack Handbook, 2nd ed., Del Research, St. Louis, MO, 1985.

0 0

Post a comment